

LA-UR-18-27477

Approved for public release; distribution is unlimited.

Title: Updating the Godiva-IV Benchmark

Author(s): Hagopian, Victoria Elizabeth

Goda, Joetta Marie Hutchinson, Jesson D. McKenzie, George Espy IV

Intended for: Keepin Summer Program Lightning Presentation

Issued: 2018-08-06

Updating the Godiva-IV Benchmark

Victoria Hagopian^{1,2}, Joetta Goda¹, Jesson Hutchinson¹, Geordie McKenzie¹

¹Los Alamos National Laboratory

NEN – Nuclear Engineering & Nonproliferation NEN-2: Advanced Nuclear Technology

²Penn State University

Summer Fun – Camping in Moab, Utah

Victoria Hagopian (Group NEN-2)

- Educational Background
 - BS North Carolina State University, 2017
 - PhD Penn State University, 2022
- Division
 - o Group: NEN-2
 - o Mentors: Joetta Goda, Jesson Hutchinson,
 - Geordie McKenzie
- Research
 - Updating Godiva-IV benchmark
 - Critical and subcritical experiments

PennState

Research Overview and Motivation

- From the disassembly...
 - Updated spindle dimensions
 - Updated glory-hole dimensions
 - Addition of shim
- New top hat
- New cross-section libraries
 - Comparison between ENDF/B-VII.1 and ENDF/B-VIII.0
- TR Cards

Research Approach

```
365 c ~~~~~~ Translation Cards ~~~~~~
366 c To move the Safety Block to one of the Control System positions, change the z value of TR1 to a value of the line:
367 c v = -2.54 \times x - 0.4207
368 c Where y is the z value in TRl in MCNP and x is the Control System Position in inches.
     c Equation is bounded between -0.150 and 7.844 inches.
370 TR1 0 0 0
371 c
372 c To move Control Rod 1 to one of the Control System positions, change the z value of TR2 to a value of the line:
373 c y = -2.54*x+0.8204
374
     c Where y is the z value in TR2 in MCNP and x is the Control System Position in inches.
375
     c Equation is bounded between -0.160 and 4.000 inches.
376 TR2 0 0 0
377 c
378 c To move Control Rod 2 to one of the Control System positions, change the z value of TR3 to a value of the line:
379 c v = -2.54 \times x + 0.3175
     c Where v is the z value in TR3 in MCNP and x is the Control System Position in inches.
380
381
     c Equation is bounded between -0.250 and 4.000 inches.
382 TR3 0 0 0
383
     c To move the Burst Rod to one of the Control System positions, change the z value of TR4 to:
385
386 c Control System Position | z Value of TR4
387 c
             Full-In
                                7.51050
388 c Full-Out | 0.00000
389 TR4 0 0 0
390 c
```

Summary of Results – ENDF/B-VII.1 vs ENDF/B-VIII.0

ENDF/B-VII.1 Cross Section Results

	ENDF	/B-VIII.	U Cross	Section	Results
7					

Case: Top Hat	Present	Removed
$\mathbf{k}_{\mathrm{eff}}$	0.99810 ± 0.00027	0.99710 ± 0.00026
Average Energy of Neutrons Causing Fission (MeV)	1.4251	1.4268
Average Number of Neutrons Produced per Fission $(\bar{\nu})$	2.595	2.595
Percentage of Fission Caused by Neutrons		
Thermal(< 0.625 eV)	0.00%	0.00%
Intermediate (0.625 eV - 100 keV)	5.54%	5.50%
Fast (> 100 keV)	94.46%	94.50%

Case: Top Hat	Present	Removed
k _{eff}	0.99773 ± 0.00028	0.99633 ± 0.00026
Average Energy of Neutrons Causing Fission (MeV)	1.4227	1.4243
Average Number of Neutrons Produced per Fission $(\bar{\nu})$	2.592	2.592
Percentage of Fiss	Percentage of Fission Caused by Neutrons	
Thermal(< 0.625 eV)	0.00%	0.00%
Intermediate (0.625 eV - 100 keV)	5.04%	5.01%
Fast (> 100 keV)	94.96%	94.99%

Summary of Results – Benchmark Case 4

Benchmark Case 4 Results

Model:	Case 4	
k _{eff} - ENDF/B-VI	0.9897 ± 0.0003	
k _{eff} - ENDF/B-VII.1	0.9907 ± 0.0003	
Average Number of Neutrons Produced per Fission $(\bar{\mathbf{v}})$	2.593	
Percentage of Fission Caused by Neutrons		
Thermal(< 0.625 eV)	0.00%	
Intermediate (0.625 eV – 100 keV)	5.57%	
Fast (> 100 keV)	94.43%	

